Abstract

A new method for approximate analytical calculations of solvent accessible surface area (SASA) for arbitrary molecules and their gradients with respect to their atomic coordinates was developed. This method is based on the recursive procedure of pairwise joining of neighboring atoms. Unlike other available methods of approximate SASA calculations, the method has no empirical parameters, and therefore can be used with comparable accuracy in calculations of SASA in folded and unfolded conformations of macromolecules of any chemical nature. As shown by tests with globular proteins in folded conformations, average errors in absolute atomic surface area is around 1 A2, while for unfolded protein conformations it varies from 1.65 to 1.87 A2. Computational times of the method are comparable with those by GETAREA, one of the fastest exact analytical methods available today.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.