Obesity, a global epidemic, is a major risk factor for chronic diseases such as type 2 diabetes, cardiovascular disorders, and metabolic syndrome. Adipose tissue, once viewed as a passive fat storage site, is now recognized as an active endocrine organ involved in metabolic regulation and inflammation. In obesity, adipose tissue dysfunction disrupts metabolic balance, leading to insulin resistance and increased production of adipose-derived extracellular vesicles (AdEVs). These vesicles play a key role in intercellular communication and contribute to metabolic dysregulation, affecting organs such as the heart, liver, and brain. AdEVs carry bioactive molecules, including microRNAs, which influence inflammation, insulin sensitivity, and tissue remodeling. In the cardiovascular system, AdEVs can promote atherosclerosis and vascular dysfunction, while those derived from brown adipose tissue offer cardioprotective effects. In type 2 diabetes, AdEVs exacerbate insulin resistance and contribute to complications such as diabetic cardiomyopathy and cognitive decline. Additionally, AdEVs are implicated in metabolic liver diseases, including fatty liver disease, by transferring inflammatory molecules and lipotoxic microRNAs to hepatocytes. These findings highlight the role of AdEVs in obesity-related metabolic disorders and their promise as therapeutic targets for related diseases.
Read full abstract