In this article, a two-dimensional (2-D) axisymmetric fluid model is built to investigate the streamer development characteristics, as well as the distribution time of each reactive components with pure N <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> , pure H <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> , and mixed gases of 50% N <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> and 50% H <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> at lower voltage and elevated temperature. The results indicate that in terms of thermal breakdown, the insulating properties of pure N <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> are stronger than that of pure H <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> . Under the influence of high temperature, the shape of the ionization rate distribution is no longer a slender wave shape but more spread. In addition, a new ionization area will be formed near the rod electrode, and finally, the ionization region near the rod electrode will merge with the ionization wave head with the increase in temperature. For the mixed gas of 50% N <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> and 50% H <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> , it will dissociate into atoms and recombine under the action of high temperature to form molecules containing both nitrogen and hydrogen elements, such as NH <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{3}$</tex-math> </inline-formula> . NH <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{3}$</tex-math> </inline-formula> is an electronegative gas, which will greatly enhance the thermal breakdown performance of the mixed gas and makes its dielectric strength second only to pure N <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> . Therefore, it can be speculated that appropriately increasing the proportion of H <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> in the mixed gas will improve both the arc extinguishing ability and the postarc thermal breakdown performance, which has been proven by experiments considering that the arc extinguishing ability of H <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> is stronger than that of N <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{2}$</tex-math> </inline-formula> .
Read full abstract