The rapid evolution of smart services and Internet of Things devices accessing cloud data centers can lead to network congestion and increased latency. Fog computing, focusing on ubiquitously connected heterogeneous devices, addresses latency and privacy requirements of workflows executing at the network edge. However, allocating resources in this paradigm is challenging due to the complex and strict Quality of Service constraints. Moreover, simultaneously optimizing conflicting objectives, e.g., energy consumption and workflow makespan increases the complexity of the scheduling process. We investigate workflow scheduling in fog–cloud environments to provide an energy-efficient task schedule within acceptable application completion times. We introduce a scheduling algorithm, Energy Makespan Multi-Objective Optimization, that works in two phases. First, it models the problem as a multi-objective optimization problem and computes a tradeoff between conflicting objectives while allocating fog and cloud resources, and schedules latency-sensitive tasks (with lower computational requirements) to fog resources and computationally complex tasks (with low latency requirements) on cloud resources. We adapt the Deadline-Aware stepwise Frequency Scaling approach to further reduce energy consumption by utilizing unused time slots between two already scheduled tasks on a single node. Our evaluation using synthesized and real-world applications shows that our approach reduces energy consumption, up to 50%, as compared to existing approaches with minimal impact on completion times.