This study comprehensively investigates the impact of the time interval (t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> ) between program/erase (P/E) cycles on the oxide quality of NAND Flash memory devices. It is observed that, at room temperature, P/E cycles with a shorter t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> yield a better oxide quality than those with a longer t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> . The oxide charge (Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) evolution by distributed P/E cycles can be well described by an analytical equation through the extension of our previous statistical transconductance reduction (G <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m,max</sub> ) method. This equation is characterized by a power of the number of P/E cycles multiplied by an exponential decay term of t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> . The former term is related to the Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> generation, whereas the latter is related to the Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> emission during t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> between cycles. This model allows to evaluate the activation energy for both Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> generation (E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A,G</sub> ) and recovery (E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A,R</sub> ). E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A,G</sub> is revealed to be a function of the logarithmic scale of t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> , decreasing from 100 to 85 meV for t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">wait</sub> varying from 0.1 to 4 s. Moreover, E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A,R</sub> is approximately 0.4 eV, which is consistent with the value of electron thermal emission from traps in SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> .
Read full abstract