Visual input is not equally processed over space. In recent years, a right visual field advantage during free walking and standing in orientation discrimination and contrast detection task was reported. The current study investigated the underlying mechanism of the previously reported right visual field advantage. It particularly tested if the advantage is driven by a stronger suppression of distracting input from the left visual field or improved processing of targets from the right visual field. Combing behavioural and electrophysiological measurements in a mobile EEG and augmented reality setup, human participants (n = 30) in a standing and a walking condition performed a line orientation discrimination task with stimulus eccentricity and distractor status being manipulated. The right visual field advantage, as demonstrated in accuracy and reaction time, was influenced by the distractor status. Specifically, the right visual field advantage was only observed when the target had an incongruent line orientation with the distractor. Neural data further showed that the right visual field advantage was paralleled by a strong modulation of neural activity in the right hemisphere (i.e. contralateral to the distractor). A significant positive correlation between this right hemispheric event related potential (ERP) and behavioural measures (accuracy and reaction time) was found exclusively for trials in which a target was presented on the right and an incongruent distractor was presented on the left. The right hemispheric ERP component further predicted the strength of the right visual field advantage. Notably, the lateralised brain activity and the right visual field advantage were both independent of stimulus eccentricity and the movement state of participants. Overall, our findings suggest an important role of spatially biased suppression of left distracting input in the right visual field advantage as found in orientation discrimination.
Read full abstract