Abstract

BackgroundSocial Anxiety Disorder is traditionally diagnosed using subjective scales that may lack accuracy. Recently, EEG technology has gained importance for anxiety detection due to its ability to capture stable and objective neurophysiological activities. However, existing methods mainly focus on extracting EEG features during resting states, with limited use of psychologically features like Event-Related Potential (ERP) in task-related states for anxiety detection in deep learning frameworks. MethodsWe collected EEG data from 63 participants exposed to four facial expressions and extracted task-relevant features. Using the EEGNet model, we predicted social anxiety and evaluated its performance using metrics such as accuracy, F1 score, sensitivity, and specificity. We compared EEGNet's performance with Deep Convolutional Neural Network (DeepConvNet), ShallowConvNet, Bi-directional Long Short-Term Memory (BiLSTM), and SVM. To assess the generalizability of the results, we carried out the same procedure on our prior dataset. ResultsEEGNet outperformed other models, achieving 99.16 % accuracy with Late Positive Potential (LPP). ERP components yielded higher accuracy than time-domain and frequency-domain features for social anxiety recognition. Accuracy was better for neutral and negative facial stimuli. Consistency across two datasets indicates stability of findings. LimitationsDue to limited publicly available task-state datasets, only our own were used. Future studies could assess generalizability on larger datasets from different sources. ConclusionsWe conducted the first test of ERP features in anxiety recognition tasks. Results show ERP features have greater potential in social anxiety recognition, with LPP exhibiting high stability and accuracy. Outcomes indicate recognizing social anxiety with negative or neutral facial stimuli is more useful.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.