Many hydrological models incorporate vegetation-related parameters to describe hydrological processes more precisely. These parameters should adjust dynamically in response to seasonal changes in vegetation. However, due to limited information or methodological constraints, vegetation-related parameters in hydrological models are often treated as fixed values, which restricts model performance and hinders the accurate representation of hydrological responses to vegetation changes. To address this issue, a vegetation-related dynamic-parameter framework is applied on the Xinanjiang (XAJ) model, which is noted as Eco-XAJ. The dynamic-parameter framework establishes the regression between the Normalized Difference Vegetation Index (NDVI) and the evapotranspiration parameter K. Two routing methods are used in the models, i.e., the unit hydrograph (XAJ-UH and Eco-XAJ-UH) and the Linear Reservoir (XAJ-LR and Eco-XAJ-LR). The original XAJ model and the modified Eco-XAJ model are applied to the Ou River Basin, with detailed comparisons and analyses conducted under various scenarios. The results indicate that the Eco-XAJ model outperforms the original model in long-term discharge simulations, with the NSE increasing from 0.635 of XAJ-UH to 0.647 of Eco-XAJ-UH. The Eco-XAJ model also reduces overestimation and incorrect peak flow simulations during dry seasons, especially in the year 1991. In drought events, the modified model significantly enhances water balance performance. The Eco-XAJ-UH outperforms the XAJ-UH in 9 out of 16 drought events, while the Eco-XAJ-LR outperforms the XAJ-LR in 14 out of 16 drought events. The results demonstrate that the dynamic-parameter model, in regard to vegetation changes, offers more accurate simulations of hydrological processes across different scenarios, and its parameters have reasonable physical interpretations.
Read full abstract