Thermal and ion-induced reactions of 1,1-difluoroethylene (1,1-C2H2F2 or iso-DFE) on Si(111)7 x 7 and vitreous SiO2 surfaces have been investigated by vibrational electron energy loss spectroscopy and thermal desorption spectrometry. Like ethylene, iso-DFE predominantly chemisorbs via a [2 + 2] cycloaddition mechanism onto the 7 x 7 surface as a di-sigma-bonded difluoroethane-1,2-diyl adstructure, which undergoes H abstraction and defluorination, producing hydrocarbon fragments and SiF(x) (x = 1-3) upon annealing to >700 K. Ion irradiation of Si(111)7 x 7 in iso-DFE at 50 eV impact energy appears to substantially enhance the production of hydrocarbon fragments and SiF(x)(), leading to stronger SiF4 desorption products over an extended temperature range (400-900 K). The observed SiC and SiF(x) produced on the 7 x 7 surface by ion irradiation in iso-DFE are found to be similar to those obtained by ion irradiation in the fluoromethane homologues, CF4 and CH2F2. The production of higher relative concentrations for the larger SiF(x) and C2-containing fragments is evidently favored on the 7 x 7 surface. On a vitreous SiO2 surface, ion irradiation in iso-DFE, unlike that in CF4 and CH2F2, appears to produce less SiF(x) than that on the 7 x 7 surface, which indicates that surface O does not interact strongly with the C2-containing fragments. The presence or absence of a C=C bond and the relative F-to-C ratio of the sputtering gas could therefore produce important effects on the resulting surface products obtained by low-energy ion irradiation.
Read full abstract