We demonstrate the possibility of manufacturing Be-based ultrathin films with high transmission at wavelengths of 11.4 and 13.5 nm. For free-standing films of Be and Be-based multilayer structures (Si/Be, ZrSi2/Be, Be/BexNy, Zr/Be, Ru/Be, Mo/Be), we determine the thresholds of the absorbed power at which over a short period (tens of minutes) of vacuum annealing, initially sagging free-standing films became visibly stretched over the hole. Of the film structures tested here, the Be/BexNy structure (with beryllium nitride interlayers) showed the highest threshold for the absorbed power (1 W/cm2). However, due to the low strength of this structure, ZrSi2/Be, Mo/Be, and Be films seem to be more promising for the manufacture of a full-size pellicle. Long-term vacuum annealing of Mo/Be and Be ultrathin films showed that they could withstand 24 hours of vacuum heating at an absorbed power density of 0.2 W/cm2 (film temperature ~250°C) without noticeable changes in EUV transmission or sagging of films. With comparable transmission (~83% at 13.5 nm and ~88% at 11.4 nm), a multilayer Mo/Be structure with a thickness of 30 nm appears to be preferable, as it shows less brittleness than a monolayer Be film with a thickness of 50 nm.
Read full abstract