BackgroundChanges in human-induced resource availability can alter the behaviour of free-living species and affect their foraging strategies. The future European Landfill Waste Directive and Circular Economy Action Plan will reduce the number of predictable anthropogenic food subsidies (PAFS), above all, by closing landfills to preclude negative effects on human health. Obligate avian scavengers, the most threatened group of birds worldwide, are the most likely group of species that will be forced to change their behaviour and use of space in response to landfill site closures. Here, we examine the possible consequences of these management decisions on the foraging patterns of Egyptian vultures (Neophron percnopterus) in an expanding population in the Iberian Peninsula.MethodsWe tracked 16 individuals in 2018–2021, including breeders and non-breeders, and, using a combination of spatial-use and spatial-network modelling, assessed landscape connectivity between key resources based on movement patterns. We then carried out simulations of future scenarios based on the loss of PAFS to predict likely changes in the movement patterns of both non-breeders and breeders.ResultsOur results show that foraging strategies in non-breeders and breeders differ significantly: non-breeders performed more dispersal movements than breeding birds across a spatial-use network. Non-breeding and breeding networks were found to be vulnerable to the removal of central foraging areas containing landfill sites, a highly predictable resource, while perturbation analysis showed dissimilar foraging responses to the gradual reduction of other predictable resources. Under a context of the non-availability of landfills for breeders and non-breeders, vultures will increase their use of extensive livestock as a trophic resource.ConclusionsFuture environmental policies should thus extend the areas used by scavengers in which livestock carcasses are allowed to remain in the wild, a strategy that will also mitigate the lack of food caused by any reduction in available waste if landfills close. In general, our results emphasize the capabilities of a spatial network approaches to address questions on movement ecology. They can be used to infer the behavioural response of animal species and, also demonstrate the importance of applying such approaches to endangered species conservation within a context of changing humanized scenarios.