The persistent global energy crisis is propelling significant innovations, including the use of palm fatty acid distillate (PFAD) as a renewable resource for producing green diesel (GD). Therefore, this study aimed to intensify GD synthesis from PFAD by optimizing the process using a Response Surface Methodology-Box Behnken Design (RSM-BBD). Optimization was achieved with a nickel phosphide catalyst supported by natural zeolite through hydrodeoxygenation method. RSM-BBD was used to design the process, considering time (1−3 h), temperature (300–350 °C), catalyst concentration (5–15 %), and pressure (20–60 bar). The results showed that the optimum conditions consisted of 11 % catalyst concentration, 3 h of reaction time, 342 °C temperature, and 29 bar pressure, leading to a 96.35 % GD yield. All conversion parameters, except pressure, significantly influenced GD yield. The quality of the synthesized GD showed high quality and compliance with Indonesian as well as European diesel fuel standards.