Abstract

The use of fossil fuels in traffic is a significant source of air pollutants and greenhouse gases in rapidly growing and densely populated cities. Diesel exhaust emissions including particle number concentration and size distribution along with the particles’ chemical composition and NOx were investigated from a Euro 4 passenger car with a comprehensive set of high time-resolution instruments. The emissions were compared with three fuel standards – European diesel (EN590), Indian diesel (BS IV) and Finnish renewable diesel (Neste MY) – over the New European Driving Cycle (NEDC) and the Worldwide harmonized Light vehicles Test Cycle (WLTC). Fuel properties and driving conditions strongly affected exhaust emissions. The exhaust particulate mass emissions for all fuels consisted of BC (81–88%) with some contribution from organics (11–18%) and sulfate (0–3%). As aromatic-free fuel, the MY diesel produced around 20% lower black carbon (BC) emissions compared to the EN590 and 29–40% lower compared to the BS IV. High volatile nanoparticle concentrations at high WLTC speed conditions were observed with the BS IV and EN590 diesel, but not with the sulfur-free MY diesel. These nanoparticles were linked to sulfur-driven nucleation of new particles in cooling dilution of the exhaust. For all the fuels non-volatile nanoparticles in sub-10 nm particle sizes were observed during engine braking, and they were most likely formed from lubricant-oil-originated compounds. With all the fuels, the measured particulate and NOx emissions were significantly higher during the WLTC cycle compared to the NEDC cycle. This study demonstrated that renewable diesel fuels enable mitigations of particulate and climate-warming BC emissions of traffic, and will simultaneously help tackle urban air quality problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.