Mediterranean ecosystems are threatened by water and nutrient scarcity and continuous loss of soil organic carbon. Urban agglomerations and rural ecosystems in the Mediterranean region and globally are interlinked through the flows of resources/nutrients and wastes. Contributing to balancing these cycles, the present study advocates standardized biochar as a soil amendment, produced from Mediterranean suitable biowaste, for closing the nutrient loop in agriculture, with parallel greenhouse gas reduction, enhancing air quality in urban agglomerations, mitigating climate change. The study’s scope is the contextualization of pyrolytic conditions and biowaste type effects on the yield and properties of biochar and to shed light on biochar’s role in soil fertility and climate change mitigation. Mediterranean-type suitable feedstocks (biowaste) to produce biochar, in accordance with biomass feedstocks approved for use in producing biochar by the European Biochar Certificate, are screened. Data form large-scale and long-period field experiments are considered. The findings advocate the following: (a) pyrolytic biochar application in soils contributes to the retention of important nutrients for agricultural production, thereby reducing the use of fertilizers; (b) pyrolysis does not release carbon dioxide to the atmosphere, contributing positively to the balance of carbon dioxide emissions to the atmosphere, with carbon uptake by plant photosynthesis; (c) biochar stores carbon in soils, counterbalancing the effect of climate change by sequestering carbon; (d) there is an imperative need to identify the suitable feedstock for the production of sustainable and safe biochar from a range of biowaste, according to the European Biochar Certificate, for safe crop production.
Read full abstract