Acid pneumonitis is a major cause of sterile acute lung injury (ALI) in humans. Acid pneumonitis spans the clinical spectrum from asymptomatic to acute respiratory distress syndrome (ARDS), characterized by neutrophilic alveolitis, and injury to both alveolar epithelium and vascular endothelium. Clinically, ARDS is defined by acute onset of hypoxemia, bilateral patchy pulmonary infiltrates and non-cardiogenic pulmonary edema. Human studies have provided us with valuable information about the physiological and inflammatory changes in the lung caused by ARDS, which has led to various hypotheses about the underling mechanisms. Unfortunately, difficulties determining the etiology of ARDS, as well as a wide range of pathophysiology have resulted in a lack of critical information that could be useful in developing therapeutic strategies. Translational animal models are valuable when their pathogenesis and pathophysiology accurately reproduce a concept proven in both in vitro and clinical settings. Although large animal models (e.g., sheep) share characteristics of the anatomy of human trachea-bronchial tree, murine models provide a host of other advantages including: low cost; short reproductive cycle lending itself to greater data acquisition; a well understood immunologic system; and a well characterized genome leading to the availability of a variety of gene deletion and transgenic strains. A robust model of low pH induced ARDS requires a murine ALI that targets mainly the alveolar epithelium, secondarily the vascular endothelium, as well as the small airways leading to the alveoli. Furthermore, a reproducible injury with wide differences between different injurious and non-injurious insults is important. The murine gastric acid aspiration model presented here using hydrochloric acid employs an open tracheostomy and recreates a pathogenic scenario that reproduces the low pH pneumonitis injury in humans. Additionally, this model can be used to examine interaction of a low pH insult with other pulmonary injurious entities (e.g., food particles, pathogenic bacteria).