Active gels present unique potential for the decontamination of chemical warfare agents (CWAs) as they strongly adhere to surfaces, thus allowing prolonged decontamination time. Herein, we present a decontamination hydrogel based on polyvinyl alcohol/borax, which contains sodium perborate (NaBO3), as an in situ source of the active ingredient hydrogen peroxide. Developed as a binary formulation, this gel instantly forms and effectively sticks when sprayed on various matrices, including porous and vertically positioned matrices. The gel efficiently detoxified the CWAs sarin (GB), O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate (VX), and sulfur mustard (HD) in test tubes (2 μL CWA/0.5 mL gel) to provide nontoxic products with reaction half-lives of <3, 45 and 113 min, respectively. The gel was also shown to efficiently decontaminate surfaces contaminated with VX (5–7 mg, 8–12 mL of gel, i.e., >99%) and to prevent GB evaporation, as proven by laboratory wind tunnel experiments. The universal decontamination abilities of this mild hydrogel, as well as its facile application and removal processes suggest that it holds high potential for future development as a new CWA decontamination tool.
Read full abstract