Nitrogen and phosphorus are limiting nutrients in freshwater ecosystems, and the remote estimation of total phosphorus (TP) and total nitrogen (TN) in eutrophic waters is of great significance. This study utilized machine learning algorithms based on Sentinel-2 satellite imagery for remote estimation of TP and TN concentrations in Lake Xingkai, Chagan and Songhua. Results indicate that random forest (RF) and XGBoost regression algorithms perform better. The performance of the GBDT algorithm was slightly lower than that of the RF and XGBoost regression algorithms, the BP algorithm had overfitting, and the SVR algorithm had poor fitting performance. Results showed that the TN concentration inversion model based on the RF algorithm had the highest accuracy (R2 = 0.98, RMSE = 0.09, MAPE = 19.74%). The Extreme Gradient Boosting (XGB) model also performed well, though slightly less accurately than RF (R2 = 0.97, RMSE = 0.14, MAPE = 20.67%). For TP concentration, the XGB model’s performance (R2 = 0.82, RMSE = 0.08, MAPE = 24.89%) was comparable to that of the RF model (R2 = 0.82, RMSE = 0.07, MAPE = 29.55%). The RF algorithm was applied to all cloud-free Sentinel-2 satellite images of these typical lakes in northeastern China during the non-glacial period from 2017 to 2023, generating spatiotemporal distribution maps of TP and TN concentrations. Between 2017 and 2023, TP concentrations in Lake Xingkai, Chagan and Songhua showed increasing, decreasing, and initially decreasing then increasing patterns, respectively. A positive correlation between temperature and TP concentration was observed, as higher temperatures enhance biological activity. In contrast, a negative correlation was found with TN concentration, as higher temperatures promote phytoplankton growth and reproduction. This study not only offers a new method for monitoring eutrophication in lakes but also provides valuable support for sustainable water resource management and ecological protection goals.
Read full abstract