Abstract

The total phosphorus (TP) concentration is a key water quality parameter for water monitoring and a major indicator of the state of eutrophication in inland lakes. Using remote-sensing to estimate TP concentration is useful, as it provides a synoptic view of the entire water region; however, the weak optical characteristics of TP lead to difficulty in accurately estimating TP concentration. The differences in water characteristics and components between lakes mean that most TP estimation methods are not applicable to all lakes. An artificial neural network (ANN) model was created to represent the correlation between TP concentration and the spectral bands of Moderate Resolution Imaging Spectroradiometer (MODIS) images in different research areas. We investigated the causal inference under the potential outcome framework to analyze the sensitivity of each band with regard to the TP concentration of different lakes for the research of water characteristics. Our results show that the accuracy of the ANN-based TP concentration estimation, with R2 > 0.73, root mean squared error (RMSE) < 0.037 mg/L in Lake Okeechobee and R2 > 0.73, RMSE < 4.1 μg/L in Lake Erie, respectively, is much higher than traditional empirical methods, e.g., linear regression. We found that the sensitive bands of TP concentration in Lake Erie are blue bands, whereas the sensitive bands in Lake Okeechobee are green bands. Various TP concentration maps were drawn to indicate the distribution of TP concentration and its tendency to change. The maps show that the distribution of TP concentration closely corresponds to the shore land-use, and a high TP concentration corresponds to the latest algal blooms breakout. Our proposed approach shows good potential for the remote-sensing estimation of TP concentration for inland lakes. Identifying the sensitive bands not only help characterize the lakes, but will also help the researchers to further observe the TP concentration of specific lakes in an efficient way.

Highlights

  • Water is a vital resource for humanity and is associated with all aspects of our lives [1,2,3]

  • Our results show that the accuracy of the artificial neural network (ANN)-based Total phosphorus (TP) concentration estimation, with R2 > 0.73, root mean squared error (RMSE) < 0.037 mg/L in Lake Okeechobee and R2 > 0.73, RMSE < 4.1 μg/L

  • Considering the low spatial resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) [44], lakes with large areas were selected as research cases

Read more

Summary

Introduction

Water is a vital resource for humanity and is associated with all aspects of our lives [1,2,3]. Inland lakes are vulnerable to pollution from industry, agriculture, transportation, and other activities. Monitoring and managing the water quality of lakes is important for environmental protection and the sustainable development of ecosystems. Total phosphorus (TP) concentration is a key water quality parameter for the monitoring and assessment of water supplies. Phosphorus is a major indicator of trophic states and an essential element for plants to grow [4,5,6,7]. TP is closely associated with optically active substances, such as

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call