This study assesses the variability of coastal extreme sea levels globally by utilizing nearly three decades of along-track, multi-mission satellite altimetry data. An altimetry-based global coastal database of the non-tidal residual sea level component has been produced. The climate variability of extremes is modeled through a parametric, non-stationary statistical model. This model captures intra-annual, inter-annual and long-term variations in non-tidal residual return levels. Comparisons with tide gauge data demonstrate the ability of altimetry data to capture the variability of coastal extreme sea levels. Our findings reveal a greater complexity in the monthly variability patterns of non-tidal residual extremes in tropical latitudes, often exhibiting multiple storm periods, contrasting with coasts in extratropical latitudes, which are mostly controlled by a winter–summer pattern. This study also highlights the significant influence of established climate circulation patterns on sea level extremes. The positive phase of the Arctic Oscillation pattern leads to increases of over 25% in non-tidal residual return levels in Northwestern Europe with respect to a neutral phase. Furthermore, return levels in the western coast of Central America could be 50% higher during El Niño compared to La Niña. Our results show a robust increasing trend in non-tidal residual return levels along most global coastlines. A comparative analysis shows that variations during the 1995–2020 period were primarily driven by intra-annual variations.
Read full abstract