We report the effects of food deprivation on the early development of Pacific red snapper Lutjanus peru during the first days of development. The point of no return (PNR) was determined using the feeding incidence after a delay in first feeding. The gradual deterioration of the larvae during food deprivation was recorded using morphometric, histological, enzymatic and biochemical analysis. The time to reach the PNR was 120 h after hatching. Morphologically, the total length, muscle height, head length, tail length and pectoral angle showed the biggest reductions and their growth coefficients changed significantly during food deprivation. Histologically, enterocyte height also was reduced significantly. The protein concentration and activities of the digestive enzymes trypsin, cathepsin-like and lipase showed a significant decrease; meanwhile, amylase activity remained constant during food deprivation. The concentration of total essential free amino acids (EFAAs) decreased significantly while that of the nonessential free amino acids (NEFAAs) remain stable during food deprivation. The most abundant EFAAs were lysine, leucine, isoleucine and valine; the most abundant NEFAAs were alanine, glycine and glutamate, suggesting a more prominent role as energy substrates. At the time of the PNR the concentration of almost all the free amino acids showed a significant decrease. Early food deprivation has a significant impact on the morphology and biochemical characteristics of L. peru. These results suggest that initial feeding of L. peru should begin within 3 days of yolk sac depletion to avoid the PNR. Further studies are necessary to confirm and validate the characters identified in this study as biomarkers of starvation under culture conditions and evaluate their possible utility in ichthyoplankton surveys.