Abstract

The present study aimed to investigate the dynamic process of soybean β-conglycinin in digestion, absorption, and metabolism in the intestine of grass carp (Ctenopharyngodon idella). Fish fed with 80g β-conglycinin/kg diet for 7weeks, the intestinal digestive enzyme was extracted to hydrolyze β-conglycinin in vitro, the free amino acid and its metabolism product contents in intestinal segments were analyzed. The present study first found that β-conglycinin cannot be thoroughly digested by fish intestinedigestive enzyme and produces new products (about 60- and 55-kDa polypeptides). The indigestible β-conglycinin further caused the free amino acid imbalance, especially caused free essential amino acid deficiency in the proximal intestine but excess in the distal intestine. Moreover, these results might be partly associated with the effect of β-conglycinin in amino acid transporters and tight junction-regulated paracellular pathway. Finally, dietary β-conglycinin increased the content of amino acid catabolism by-product ammonia while decreased the amino acid anabolism product carnosine content in the proximal intestine and distal intestine. Thus, the current study first and systemically explored the dynamic process of β-conglycinin in digestion, absorption, and metabolism, which further supported our previous study that dietary β-conglycinin suppressed fish growth and caused intestine injure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.