A novel vernier effect filter is designed utilizing two cascaded Mach–Zehnder interferometers (MZIs). Integrating the filter into an erbium-doped fiber laser (EDFL), the tunability of laser wavelength is achieved. Each MZI comprises two sequentially interconnected 3 dB optical couplers (OCs), where the incoming light is initially split into two arms at the first OC and subsequently recombined at the second OC. Interference occurs due to the optical path difference between these two beams. Notably, the two MZIs exhibit closely matched free spectral ranges (FSRs), leading to the formation of a broadened envelope in the superimposed spectrum. By delicately adjusting the optical path difference between the two arms of one MZI, a little drift of the interference spectrum is induced. This small amount of drift, in turn, triggers a significant movement of the envelope, giving rise to the so-called vernier effect. Integrating the vernier effect filter into an EDFL, the wavelength of the fiber laser can be tuned from 1542.56 nm to 1556.62 nm, with a tuning range of 14.06 nm. Furthermore, by employing a high-precision stepper motor, a remarkable tuning accuracy of 0.01 nm is attainable. The side mode suppression ratio of all wavelengths is above 55 dB. In comparison to reported tunable fiber lasers utilizing MZI filters, the proposed fiber laser in this study offers enhanced precision and a more user-friendly tuning process.