Smart city is able to make the city source and infrastructure more efficiently utilized, which improves the quality of life for citizens. In this framework, wireless sensor networks (WSNs) play an important role to collect, process, and analyze the corresponding information. However, the massive deployment of WSNs consumes a significant energy consumption, which has raised the growing demand for green WSNs for smart cities. Exploiting the recent advance in collaborative energy and information transfer to power the WSNs and transmit the data has been considered a promising approach to realize the green WSNs for smart cities. We propose an architecture design of the green WSNs for smart cities, by exploiting the collaborative energy and information transfer protocol, and illustrate the challenging issues in this design. To achieve a green system design, the sensor nodes in WSNs harvest the energy simultaneously with the information decoding (ID) from the received radio frequency signals. Specifically, the energy-constrained sensor nodes partition the received signals into two independent groups to perform energy harvesting (EH) and ID. The sensor nodes then use the harvested energy to amplify and forward the information signals. We study the joint optimization of subcarrier grouping, subcarrier pairing, and power allocation such that the transmission rate performance is maximized with the EH constraint. The joint optimization problem is solved via dual decomposition after transforming it into an equivalent convex optimization problem. Simulation results tested with the real WSNs system data indicate that the performance of our proposed protocol can be significantly improved.
Read full abstract