Graphene’s incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses. Key factors, including initial ion concentration, pH, temperature, and sorbent dosage, were examined. Results showed optimal nickel removal at specific pH levels with removal efficiency decreasing from 91 to 80% as Ni (II) concentrations increased from 10 to 100 mg/L. The adsorption capacity improved from 11 to 130 mg/g. Equilibrium data aligned with Langmuir and Freundlich isotherm models, while adsorption kinetics followed a second-order kinetic model. These findings highlight the potential of PS/GP nanocomposites for nickel ion removal, offering a promising solution for small-scale industrial applications.
Read full abstract