Abstract
In the present research, we investigate Congo red (CR) removal by layered double hydroxide and oxide AlCa on cellulose acetate (CA) fiber as anion-adsorbents in aqueous solution. The as-prepared composite was characterized by FE-SEM, XRD, FTIR, EDS-mapping and BET-BJH analyses. The CR adsorption ability on AlCa LDH/CA and AlCa LDO/CA adsorbents was evaluated. The removal property, dye adsorption and filtration properties of the AlCa LDO/CA composite were studied for removal CR based on central composite design (CCD) technique through investigating operational variables (temperature, adsorbent dosage, pH and contact time). The fabricated AlCa LDO/CA composite indicates a high removal efficiency up to 98.7 % for the CR removal in the 16 min. The data of the adsorption equilibrium were described by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms, and exhibited that AlCa LDH/CA fibers and AlCa LDO/CA fibers followed a pseudo-second-order kinetic model and Langmuir isotherm. The stability of Al-Ca-LDO/CA fibers nanocomposite was indicated that it was >95 % after eight cycles for removal of CR in the batch method on stirrer. The findings illustrated that appropriate AlCa LDO/CA fiber could be an efficient technique for CR elimination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have