Physical vapor deposition (PVD) is widely utilized for the production of organic semiconductor devices due to its ability to form thin layers with exceptional properties. Although the layers in the device usually consist of two or more components, there is limited understanding about the fundamental characteristics of such multicomponent vapor-deposited glasses. Here, spectroscopic ellipsometry was employed to characterize the densities, thermal stabilities, and optical properties of covapor deposited NPD and TPD glasses across the entire range of composition. We find that codeposited NPD and TPD form high density glasses with enhanced thermal stability. The dependences of density and stability upon substrate temperature are correlated, and the birefringence of the codeposited glasses is determined by the reduced substrate temperature of mixtures. Additionally, we observe that the transformation of a highly stable and dense two-component glass into its supercooled liquid initiates from the free surface and propagates into the bulk at a constant velocity, like single component PVD glasses. All of these features are consistent with the surface equilibration mechanism.
Read full abstract