Abstract
The rate at which a nonequilibrium system decreases its free energy is commonly ascribed to molecular relaxation processes, arising from spontaneous rearrangements at the microscopic scale. While equilibration of liquids usually requires density fluctuations at time scales quickly diverging upon cooling, growing experimental evidence indicates the presence of a different, alternative pathway of weaker temperature dependence. Such equilibration processes exhibit a temperature-invariant activation energy, on the order of 100 kJ mol−1. Here, we identify the underlying molecular process responsible for this class of Arrhenius equilibration mechanisms with a slow mode (SAP), universally observed in the liquid dynamics of thin films. The SAP, which we show is intimately connected to high-temperature flow, can efficiently drive melts and glasses toward more stable, less energetic states. Our results show that measurements of liquid dynamics can be used to predict the equilibration rate in the glassy state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.