Intestinal interstitial fibrosis is a core event of inflammatory bowel disease (IBD) development. Calycosin has been recognized to carry various therapeutic bioactivities. However, the role of calycosin in intestinal interstitial fibrosis remains to be illustrated. This aim of this study was to explore the effects of calycosin on intestinal interstitial fibrosis in IBD and the underlying mechanisms. The in vitro and in vivo models were established by using TNBS-induced mouse IBD model and co-culture of intestinal epithelial cells and intestinal interstitial cells; moreover, lentivirus-mediated knockdown of NLRP3 expression was applied. The results showed that calycosin significantly improved the intestinal interstitial fibrosis of TNBS-induced IBD. Mechanistically, calycosin downregulated NLRP3 expression and inhibited the activation of IL-33/ST2 signaling in intestinal epithelial cells, which subsequently impedes intestinal interstitial cell migration and activation by regulating the secretion of IL-33/ST2 signaling-induced fibrosis mediators. Notably, combination of calycosin and NLRP3 signaling blockade improved the intestinal interstitial fibrosis extent. Altogether, this study suggests calycosin can improve intestinal interstitial fibrosis by downregulating NLRP3-IL-33/ST2 signaling, reducing inflammation and decreasing pro-fibrotic factors’ secretion, which provides a new perspective for therapeutic options of IBD.