Pure electric field-controlled 180° magnetization switching plays a vital role in low-power magnetoelectric memory devices. Using micromagnetic simulation, we engineered a square-shaped epitaxial Fe3Si nanomagnet on a PMN-PT piezoelectric substrate to make the magnetic easy axis slightly deviate 18° from the piezostrain axis, aiming to break the symmetry of the magnetization distribution and achieve deterministic magnetization reversal paths. Under the coaction of a magnetic field and an electric field, the simulated magnetic hysteresis loops and magnetic domain patterns reveal a fourfold to twofold magnetic anisotropy transition and magnetization reversal paths. Stimulated by pure electric field-induced piezoelectric strain, deterministic 180° magnetization reversals are accomplished by the two successive clockwise 90° switching process. The results help to comprehend electrically regulated deterministic magnetization reversal and pave an avenue for designing multistate spintronics devices.
Read full abstract