Selenium (Se) and zinc (Zn) are essential trace elements with antioxidant properties, and their supplementation has been shown to be protective against the toxicity of various environmental and dietary substances. The aim of this study was to investigate the potential protective effect of selenium and zinc as adjuvants against barium (Ba) toxicity in lactating rats and their offspring. The pregnant rats were divided into six groups: the first as control; group 2 received barium (67ppm) in the drinking water; group 3 had combined Ba + Se (0.5mg/kg) in the diet; group 4 received Zn (50mg/kg bw) by gavage together with Ba; groups 5 and 6, positive controls, were treated with selenium (0.5mg/kg) and zinc (50mg/kg bw), respectively. MDA, H2O2, AOPP, CAT, GPx, and SOD levels were measured and lung histopathology was performed. Our results showed that barium administration caused lung damage as evidenced by an increase in MDA, H2O2, and AOPP levels and a decrease in the activities of CAT, GPx, and SOD in mothers and their offspring. A decrease in lung GSH, NPSH, and MT levels was also observed. Supplementation of Ba-treated rats with Se and/or Zn significantly improved the pulmonary antioxidant status of mothers and their offspring. Histopathological examinations were also consistent with the results of biochemical parameters, suggesting the beneficial role of Se and Zn supplementation, as evidenced by less accumulation of collagen fibers as studied by hematoxylin and eosin (H&E) and Masson's trichrome staining. In conclusion, we demonstrate the adverse effects of maternal barium exposure during pregnancy and on neonatal lung health and the protective effects of selenium and zinc in preventing the adverse effects of barium exposure.
Read full abstract