BackgroundPer- and polyfluoroalkyl substances (PFASs) are a growing public health concern. Some longer chain PFASs bioaccumulate and many compounds persist in the environment for long time periods. Recent studies have established their ability to pass through placenta, yet data on the transplacental transfer efficiency and partitioning of short and long chain PFASs in blood matrices are limited. ObjectivesTo assess predictors of the partitioning of 17 PFAS compounds detected in the maternal serum, umbilical cord serum and whole cord blood samples from matched mother-newborn pairs from two Faroe Islands cohorts. MethodsWe examined 151 mother-newborn pairs from two successive Faroese birth cohorts. Cord:maternal serum (transplacental transfer) and serum:whole cord blood (blood partitioning) ratios were estimated for 17 PFAS compounds. We also examined the relationships of these ratios with maternal, newborns', and physico-chemical properties using multivariable regression analyses. ResultsModerate to high correlations were observed between maternal and cord serum PFAS concentrations (ρ: 0.41 to 0.95), indicating significant transfer of these compounds from the mother to the fetus. Median transplacental transfer ratios were generally below 1, except for perfluorooctane sulfonamide (FOSA), and ranged between 0.36 for perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnDA) and 1.21 for FOSA. Most PFASs exhibited a preference to the serum component of the blood, except FOSA and perfluoroheptanoate (PFHpA), with blood partitioning ratios ranging from 0.36 for FOSA to 2.75 for PFUnDA. Both the functional groups and carbon chain length of different PFASs were important predictors of transplacental transfer and blood partitioning. We observed a U-shaped relationship between transplacental transfer ratios and carbon chain length for perfluorocarboxylates and perfluorosulfonates. Importantly, gestational diabetes was also a strong predictor of transplacental transfer ratios, with significantly higher transfer in mothers with gestational diabetes. ConclusionsOur findings provide a better understanding of the transplacental transfer and blood partitioning of a large number of PFAS compounds. Results elucidate the importance of chemical structure for future risk assessments and choice of appropriate blood matrices for measurement of PFAS compounds.
Read full abstract