Timely and effective feature extraction is the key for fault diagnosis of rolling element bearing (REB). However, fault feature extraction will become very difficult in the early weak fault stage of REB due to the interference of strong background noise. To solve the above difficulty, a two-stage feature extraction method for early weak fault of REB is proposed, which mainly combines feature mode decomposition (FMD) with a blind deconvolution (BD) method. Firstly, based on the impulsiveness and cyclostationary characteristics of the vibration signal of faulty REB, FMD is used to decompose the complex original vibration signal into several modes containing single component. Subsequently, the sparse index (SI) is calculated for each mode, and the mode containing sensitive fault feature is selected for further analysis. Subsequently, apply the deconvolution method on the selected mode for further enhancing the impulsive characteristic. At last, traditional envelope spectrum (ES) analysis is applied on the filtered signal, and satisfactory fault features are extracted. Effectiveness and advantages of the proposed method are verified through experimental and engineering signals of REBs.
Read full abstract