본 논문에서는 모수적과 비모수적 엔트로피 추정량들에 기초한 정규분포에 대한 적합도 검정을 다룬다. 정규분포의 엔트로피에 대한 모수적 추정량으로 사용할 최소분산비편향추정량을 유도한다. 이 추정량과 대립가설 하에서의 자료생성분포에 대한 비모수적 엔트로피 추정량으로 표본엔트로피와 이것의 변형된 추정량들을 이용하여 검정통계량들을 구축했고 이 검정통계량들을 사용하는 새로운 엔트로피 기반 적합도 검정들을 제시한다. 제안한 검정들의 기각값들을 모의실험을 통해 추정해서 표의 형태로 제시한다. 성능의 조사를 위해 수행한 모의실험에서 제안한 검정들이 기존의 Vasicek (1976) 검정보다는 더 좋은 검정력을 가지는 것으로 나타난다. 응용에서 새로운 검정들이 정규성 검정을 위한 경쟁적인 도구로 시용될 수 있을 것으로 기대된다. In this paper, we deal with testing goodness-of-fit for normal distribution based on parametric and nonparametric entropy estimators. The minimum variance unbiased estimator for the entropy of the normal distribution is derived as a parametric entropy estimator to be used for the construction of a test statistic. For a nonparametric entropy estimator of a data-generating distribution under the alternative hypothesis sample entropy and its modifications are used. The critical values of the proposed tests are estimated by Monte Carlo simulations and presented in a tabular form. The performance of the proposed tests under some selected alternatives are investigated by means of simulations. The results report that the proposed tests have better power than the previous entropy-based test by Vasicek (1976). In applications, the new tests are expected to be used as a competitive tool for testing normality.
Read full abstract