Abstract

This article develops nonparametric tests of independence between two stochastic processes satisfying β-mixing conditions. The testing strategy boils down to gauging the closeness between the joint and the product of the marginal stationary densities. For that purpose, we take advantage of a generalized entropic measure so as to build a whole family of nonparametric tests of independence. We derive asymptotic normality and local power using the functional delta method for kernels. As a corollary, we also develop a class of entropy-based tests for serial independence. The latter are nuisance parameter free, and hence also qualify for dynamic misspecification analyses. We then investigate the finite-sample properties of our serial independence tests through Monte Carlo simulations. They perform quite well, entailing more power against some nonlinear AR alternatives than two popular nonparametric serial-independence tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.