Entanglement protection from noisy environments is an essential task in practical quantum information and communication. In this paper, we investigate the entanglement recovery of an amplitude-damped tripartite GHZ state by a weak-measurement reversal procedure. In particular, we emphasize the key importance of the inequivalency of probability amplitudes of the tripartite system under the recovery technique. We explore the maximal and non-maximal tripartite entangled state scenarios under amplitude damping noise in the absence and presence of weak measurement reversal procedures. Importantly, the non-maximal entangled state turns out to be a good choice for the entanglement recovery via weak-measurement reversal procedure.
Read full abstract