Abstract
Quantum information theory is a new interdisciplinary research field related to quantum mechanics, computer science, information theory, and applied mathematics. It provides completely new paradigms to do information processing tasks by employing the principles of quantum mechanics. In this review, we first survey some of the significant advances in quantum information theory in the last twenty years. We then focus mainly on two special subjects: discrimination of quantum objects and transformations between entanglements. More specifically, we first discuss discrimination of quantum states and quantum apparatus in both global and local settings. Secondly, we present systematical characterizations and equivalence relations of several interesting entanglement transformation phenomena, namely entanglement catalysis, multiple-copy entanglement transformation, and partial entanglement recovery.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have