The reduction of CO2 emissions is closely linked to the development of highly efficient and economical steel components in plant and process engineering. To withstand the high combined corrosive, tribological, thermal, and mechanical stresses, wear-resistant coatings tailored to the application and steel grade are used. In addition to the increasing demand to substitute conventional cobalt alloys with nickel alloys, there is also a growing need for defined or functional surfaces of high integrity. Due to high tool wear, milling operations required to produce the complex geometries of the components are often not economically feasible for SMEs. By means of alloy modification of the filler metals for nickel-based plasma build-up welded wear-resistant coatings and by the use of innovative ultrasonic-assisted milling processes more favourable machinability shall be achieved without reducing the wear protection potential. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on the machinability is investigated. This is done based on a wear protection alloy NiCrMoSiFeB (trade name: Colmonoy 56 PTA) typically used for screw machines, which substitutes conventional CoCr alloys (Stellite). Metallurgical investigations and in-situ measurements of occurring process forces and temperatures at the tool cutting edge during milling as well as subsequent investigations of tool wear and surface integrity allow a detailed analysis and correlation between microstructural properties and machinability. For the cast samples, a clear change in the microstructure and hardness can be seen through the addition of Al, Ti, or Nb. These differences lead to an improvement in the machining process for Nb. Al and Ti cause long-needled or star-shaped precipitations and hardness increases, which lead to higher cutting forces and increased tool wear.