Harmonizing the cleanliness and economics of energy is an effective means of integrating economic growth with carbon peaking goals, and realizing sustainable development in China. However, due to the existence of the energy trilemma, a worthwhile research question is how to fulfill the carbon peaking commitment while guaranteeing China's stable national development. Based on this, this paper not only discusses the nonlinear relationship between clean energy consumption transition and economic growth through threshold regression, but also simulates several scenarios of energy transition dynamics with different growth rates by using Oracle Crystal Ball software to forecast the future trend of China's carbon emissions up to 2030, aiming to find a transition scenario that can make the peak of carbon emissions appear without significant economic burden, so as to put forward countermeasures and suggestions to avoid falling into the energy trilemma in the process of fulfilling the commitment of carbon peaking. This paper finds that: firstly, there is an inverted U-shaped non-linear relationship between clean energy consumption transition and economic growth, with the inflection point of the inverted U-shape being 0.595; and secondly, only when energy transition exceeds 0.535 in 2030, the peak of carbon emissions (about 12,922.28 Mt) will occur. In summary, this paper argues that China should steadily advance energy transition, avoiding either too fast or too slow a pace (bring clean energy consumption transition to within the 0.535–0.595 range by 2030), in order to secure economic growth while honoring its commitment to peak carbon. Therefore, China should prudently design a coal exit strategy to avoid falling into the energy trilemma when promoting energy transition. Moreover, if China wants to further fulfill its commitment to carbon neutrality by 2060, it needs to continue to deepen the construction of green financial markets in order to better balance the relationship between energy cleanliness and economy.
Read full abstract