During the last decade, developing more sustainable transportation modes has become a primary objective for car manufacturers and governments around the world to mitigate environmental issues, such as climate change, the continuous increase in greenhouse gas (GHG) emissions, and energy depletion. The use of hydrogen fuel cell technology as a source of energy in electric vehicles is considered an emerging and promising technology that could contribute significantly to addressing these environmental issues. In this study, the effects of Hydrogen Fuel Cell Battery Electric Vehicles (HFCBEVs) on global GHG emissions compared to other technologies, such as BEVs, were determined based on different relevant factors, such as predicted sales for 2050 (the result of the developed prediction model), estimated daily traveling distance, estimated future average global electricity emission factors, future average Battery Electric Vehicle (BEV) emission factors, future global hydrogen production emission factors, and future average HFCBEV emission factors. As a result, the annual GHG emissions produced by passenger cars that are expected to be sold in 2050 were determined by considering BEV sales in the first scenario and HFCBEV replacement in the second scenario. The results indicate that the environmental benefits of HFCBEVs are expected to increase over time compared to those of BEVs, due to the eco-friendly methods that are expected to be used in hydrogen production in the future. For instance, in 2021, HFCBEVs could produce more GHG emissions than BEVs by 54.9% per km of travel, whereas in 2050, BEVs could produce more GHG emissions than HFCBEVs by 225% per km of travel.