Interaction of an ultrafast pulsed laser with material surface has become a research hotspot in recent years. Picosecond pulsed laser micromachining of AlCu4SiMg aluminum alloy and determination of the ablation threshold are the main research directions, which have vitally important theoretical significance and application value. The ablation characteristics of aluminum alloy under different focusing characteristics and energies were experimentally investigated with picosecond ultrafast laser pulses. The different ablation areas of laser Gaussian beam were divided based on ablation threshold, morphological characteristics, and interaction mechanism. The surface morphologies and feature sizes, including ablation width (i.e. diameter), ablation depth, ablation depth-to-width ratio, ablation area, ablation volume, and single pulse ablation rate, of the ablation craters were studied; and the variation of their ablation distributions with laser energy density were analyzed. The results showed that the irradiated surface morphologies of aluminum alloy under the focal lengths of 100 and 150mm were better, and the ablation width increased with the increase of focal length; however, the ablation depth decreased clearly. More distinct morphological characteristics at high energy and better ablation quality at low energy were exhibited by ablation crater surface. Ablation area could be divided into ablation, melt, redeposition, phase-transformation, and modification regions, and the entire regions were dominated by multiphoton ionization and avalanche ionization. The ablation feature sizes, increasing monotonically in laser energy density, exhibited approximately linear dependence on the energy density at low energy-density. When the energy density reached a certain critical value, the increasing extent decelerated gradually, and tended increasingly towards saturation. According to the linear dependence of laser energy density on the ablation crater area, the average ablation threshold of AlCu4SiMg aluminum alloy with a picosecond pulsed laser was determined to be about 0.122Jcm−2 at a repetition rate of 1kHz under the number of pulses of 1000 and 2000. More number of pulses resulted in smaller ablation threshold, and the ablation threshold decreased at different degrees with the increase of low repetition rate.
Read full abstract