Abstract

Bilayer barium titanate (BaTiO3, BTO)/bismuth ferrite (BiFeO3, BFO) capacitive devices were fabricated and systematically analyzed from the aspects of thin-film material crystallography and electrical characterization. The tetragonal phase (T) of BTO with the reducing thickness (150 nm) was demonstrated through carefully adjusting the conditions of sputtering process and post-thermal treatments. The thickness dependence of polarization, energy density, permittivity, and leakage current was investigated in the BTO/BFO bilayer system. It showed that 150-nm BFO film is an optimal thickness, which led to the substantial increase in energy density up to 920 mJ/cm3 with the charge/discharge efficiency of 79.7% at 10 V. The permittivity of 150-nm BFO bilayer device was found to be 258, which is much higher than the single -layer BFO and other BTO/BFO devices with different BFO thicknesses. Leakage current could be reduced by three orders with the increasing thickness of BFO layer from 30 to 225 nm. In addition, the leakage current of BTO/BFO bilayer capacitors was 102 times lower than BFO single layer with the same total thickness. The result showed that the leakage current of BFO material could be significantly reduced in the bilayer system. The performance of BTO/BFO bilayer capacitors indicates that it is a promising technique for the implementation of nanoscale, lead-free, and nonelectrochemical thin-film energy storage-related applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.