To compare the performance of an in-line heat moisture exchanging filter (HMEF) (Pall BB-100; Pall Corporation; East Hills, NY) to a conventional heated wire humidifier (H-wH) (Marquest Medical Products Inc., Englewood, Colo) in the mechanical ventilator circuit on the incidence of ventilator-associated pneumonia (VAP) and the rate of endotracheal tube occlusion. This report describes a prospective, randomized trial of 280 consecutive trauma patients in a 20-bed trauma ICU (TICU). All intubated patients not ventilated elsewhere in the medical center prior to their TICU admission were randomized to either an in-line HMEF or a H-wH in the breathing circuit. Ventilator circuits were changed routinely every 7 days, and closed system suction catheters were changed every 3 days. HMEFs were changed every 24 h, or more frequently if necessary. A specific endotracheal tube suction and lavage protocol was not employed. Patients were dropped from the HMEF group if the filter was changed more than three times a day or the patient was placed on a regimen of ultra high-frequency ventilation. The Centers for Disease Control and Prevention (CDC) criteria for diagnosis of pneumonia were used; early-onset, community-acquired pneumonia was defined if CDC criteria were met in < or =3 days, and late-onset, hospital-acquired pneumonia was defined if criteria were met in >3 days. Laboratory and chest radiograph interpretation were blinded. The patient ages ranged from 15 to 95 years in the HMEF group and 16 to 87 years in the H-wH group (p=not significant), with a mean age of 46 years and 48 years, respectively. The male to female ratio ranged between 78 to 82%/22 to 18%, respectively, and 55% of all admissions were related to blunt trauma, 40% secondary to penetrating trauma, and 5% to major burns. There was no difference in Injury Severity Score (ISS) between the two groups. Moreover, there was no significant difference in mean ISS among those who did not develop pneumonia and those patients who developed either early-onset, community-acquired or late-onset, hospital-acquired pneumonia. The HMEF nosocomial VAP rate was 6% compared to 16% for the H-wH group (p<0.05), and total ventilator circuit costs (per group) were reduced. There were no differences in duration of ventilation (mean+/-SD) if the patient did not develop pneumonia or if the patient developed an early-onset, community-acquired or a late-onset, hospital-acquired pneumonia. Moreover, total TICU days were reduced in the HMEF group. In addition, the incidence of partial endotracheal tube occlusion was not significantly different between the H-wH and the HMEF groups. The HMEF used in this study reduced the incidence of late-onset, hospital-acquired VAP, but not early-onset, community-acquired VAP, compared to the conventional H-wH circuit. This was associated with a significant reduction in total ICU stay. Disposable ventilator circuit costs in the HMEF group were reduced compared to the H-wH group in whom circuit changes occurred at 7-day intervals. The use of the HMEF is a cost-effective clinical practice associated with fewer late-onset, hospital-acquired VAPs, and should result in improved resource allocation and utilization.
Read full abstract