The use of in situ active capping to control phosphorus release from sediment has attracted more and more attentions in recent years. It is important to identify the effect of capping mode on the control of phosphorus release from sediment by the in situ active capping method. In this study, the impact of capping mode on the restraint of phosphorus migration from sediment into overlying water (OW) by lanthanum hydroxide (LH) was studied. Under no suspended particulate matter (SPM) deposition condition, LH capping effectively restrained the liberation of endogenous phosphorus into OW during anoxia, and the inactivation of diffusive gradient in thin film-unstable phosphorus (UPDGT) and mobile phosphorus (PMobile) in the topmost sediment served as a significant role in the restraint of endogenous phosphorus migration into OW by LH capping. Under no SPM deposition, although the transformation of capping mode from the single high dose capping to the multiple smaller doses capping had a certain negative impact on the restraint efficiency of endogenous phosphorus liberation to OW by LH in the early period of application, it increased the stability of phosphorus in the static layer in the later period of application. Under SPM deposition condition, LH capping had the capability to mitigate the risk of endogenous phosphorus liberation into OW under anoxia conditions, and the inactivation of UPDGT and PMobile in the topmost sediment was a significant mechanism for the control of sediment phosphorus liberation into OW by LH capping. Under SPM deposition condition, the change in the covering mode from the one-time high dose covering to the multiple smaller doses covering decreased the efficiency of LH to limit the endogenous phosphorus transport into OW in the early period of application, but it increased the performance of LH to restrain the sedimentary P liberation during the later period of application. The results of this work suggest that the multiple LH capping is a promising approach for controlling the internal phosphorus loading in freshwater bodies where SPM deposition often occurs in the long run.
Read full abstract