Abstract

The characteristics and mechanism of phosphate adsorption onto magnetite, hematite and goethite were comparatively studied, and the effects of magnetite, hematite and goethite amendment and capping on endogenous phosphorus (P) liberation from sediment into overlying water (OW) were comparatively investigated. The adsorption of phosphate onto magnetite, hematite and goethite mainly obeyed the inner-sphere complexation mechanism, and the phosphate adsorption capacity decreased in the order of magnetite > goethite > hematite. The magnetite, hematite and goethite amendment all can decrease the risk of endogenous Prelease into OW under anoxic conditions, and the inactivation of diffusion gradients in thin films-labile P in sediment made a great contribution to the restraint of endogenous P release into OW by the magnetite, hematite and goethite amendment. The efficiency of endogenous P release restraint by the iron oxide addition decreased in the order of magnetite > goethite > hematite. The magnetite, hematite and goethite capping all can be effective for the suppression of endogenous P release from sediment into OW under anoxic conditions, and most of P immobilized by the magnetite, hematite and goethite capping layers is relatively or very stable. The results obtained from this work suggest that magnetite is more suitably used a capping/amendment material to prevent P release from sediment than hematite and goethite, and magnetite capping is a promising approach for hindering sedimentary P release into OW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call