The role of FGF is the least understood of the morphogens driving mammalian gastrulation. Here we investigated the function of FGF in a stem cell model for human gastrulation known as a 2D gastruloid. We found a ring of FGF-dependent ERK activity that closely follows the emergence of primitive streak (PS)-like cells but expands further inward. We showed that this ERK activity pattern is required for PS-like differentiation and that loss of PS-like cells upon FGF receptor inhibition can be rescued by directly activating ERK. We further demonstrated that the ERK-ring depends on localized activation of basally localized FGF receptors (FGFR) by endogenous FGF gradients. We confirm and extend previous studies in analyzing expression of FGF pathway components, showing the main receptor to be FGFR1 and the key ligands FGF2/4/17, similar to the human and monkey embryo but different from the mouse. In situ hybridization and scRNA-seq revealed that FGF4 and FGF17 expression colocalize with the PS marker TBXT but only FGF17 is maintained in nascent mesoderm and endoderm. FGF4 and FGF17 reduction both reduced ERK activity and differentiation to PS-like cells and their derivatives, indicating overlapping function. Thus, we have identified a previously unknown role for FGF-dependent ERK signaling in 2D gastruloids and possibly the human embryo, driven by a mechanism where FGF4 and FGF17 signal through basally localized FGFR1 to induce PS-like cells.
Read full abstract