Abstract
Ecotropical viral integration site 1 (Evi-1) is a transcription factor essential for vascularisation and cell proliferation during embryonic development. The chimeric transcription factor AML1-EVI-1 is activated in leukaemia where it plays a role as a differentiation block and stimulator of proliferation. Here, we cloned chicken Evi-1 and analysed its expression during embryonic development. There was early expression in the pharyngeal arches, in the brain and intermediate mesoderm of chicken embryos at stage 15. Later at stage 20, Evi-1 mesenchymal expression was concentrated in the second pharyngeal arch, and weaker expression was found in the mandibular and maxillary prominences. Facial expression decreased in intensity during development. Evi-1 expression in the limb was also limited to the mesenchyme with the most prominent expression in the anterior margin. Evi-1 was not detectable in the posterior limb bud. At later stages, Evi-1 was expressed in the peripheral mesenchyme of the limb but not in the developing precartilage blastema. At stage 29, the expression became restricted to the perichondrium and interdigital areas; however, the cartilage condensations themselves were negative. To study the function of Evi-1 in chondrogenesis, we knocked down expression in limb micromass cultures using siRNA. Chondrogenesis was significantly reduced in both anterior and posterior cultures. Since Evi-1 was expressed adjacent to the apical ectodermal ridge and this area is a source of FGFs, we tested whether endogenous FGF receptor signalling was necessary to maintain its expression. Inhibitors of FGFRs (PD161570 and SU5402) were applied to wing mesenchyme, and downregulation of Evi-1 expression was observed after treatment with both inhibitors. Therefore, Evi-1 may be a transcription factor mediating the effects of FGF and may also be defining the size of cartilage elements in the limb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.