When it comes to visceral leishmaniasis (VL) in Brazil, one of the main targets of public health policies of surveillance is the control of domestic canine reservoirs of Leishmania infantum. This paper aims to evaluate the effect of the dog population and household environment for the maintenance of natural foci in the transmission to human and animal hosts in an endemic city for VL, Bauru, in Brazil. We collected 6,578 blood samples of dogs living in 3,916 households from Nov.2019 to Mar.2020 and applied geospatial models to predict the disease risk based on the canine population. We used Kernel density estimation, cluster analysis, geostatistics, and Generalized Additive Models (GAM). To validate our models, we used cross-validation and created a receiver operating characteristic (ROC) curve. We found an overall canine VL (CVL) seroprevalence of 5.6% for the sampled dogs, while for the households, the positivity rate was 8.7%. Odds ratios (OR) for CVL increased progressively according to the number of canines for >2 dogs (OR 2.70); households that already had CVL in the past increased the chances for CVL currently (OR 2.73); and the cases of CVL increase the chances for human VL cases (OR 1.16). Our models were statistically significant and demonstrated a spatial association between canine and human disease cases, mainly in VL foci that remain endemic. Although the Kernel density ratio map had the best performance (AUC = 82), all the models showed high risk in the city’s northwest area. Canine population dynamics must be considered in public policies, and geospatial methods may help target priority areas and planning VL surveillance in low and middle-income countries.