Growth regulation must be robust to ensure correct final size, but also adaptative to adjust to less favorable environmental conditions. Developmental coordination between whole-organism and the brain is particularly important, as the brain is a critical organ with little adaptability. Brain growth mainly depends on neural stem cell (NSC) proliferation to generate differentiated neural cells, it is however unclear how organism developmental progression is coordinated with NSCs. Here we demonstrate that the steroid hormone ecdysone plays a multi-step, stage specific role in regulating Drosophila NSCs, the neuroblasts. We used animals that are unable to synthesize ecdysone, to show that the developmental milestone called “critical weight peak”, the peak that informs the body has reached minimum viable weight to survive metamorphosis, acts a checkpoint necessary to set neuroblast cell cycle pace during larval neurogenesis. The peaks of ecdysone that occur post-critical weight are no longer required to maintain neuroblast division rate. We additionally show that in a second stage, at the onset of pupariation, ecdysone is instead required to trigger neuroblast's proliferation exit and consequently the end of neurogenesis. We demonstrate that, without this signal from ecdysone, neuroblasts lose their ability to exit proliferation. Interestingly, although these neuroblasts proliferate for a longer period, the number of differentiated neurons is smaller compared to wild-type brains, suggesting a role for ecdysone in neuron maintenance. Our study provides insights into how neural stem cells coordinate their division rate with the pace of body growth, identifying a novel coordination mechanism between animal development and NSC proliferation.