Abstract

We have analyzed the genesis of various neuronal classes and subclasses in the ganglion cell layer of the primate retina. Neurons were classified according to their size and the time of their origin was determined by pulse labeling with 3H-thymidine administered to female monkeys 38 to 70 days pregnant. All offspring were sacrificed postnatally, and their retinas processed for autoradiography. The somata of cells in the retinal ganglion cell layer generated on embryonic day (E) 38 ranged from 9 to 14 microns in diameter. Between E40 and E56, the minimum soma diameter remained around 8-9 microns, while the maximum gradually increased to 22 microns. As a consequence, the means of the distributions of labeled cells also increased with age, from 11.8 microns diameter for cells generated on E38 to 14.6 microns diameter at E56. Over this period the percentage of labeled cells in the 10.5-16.5 microns and greater than 16.5 microns diameter range gradually increased. The proportion of the labeled cells in the less than 10.5 microns diameter range decreased from E38 to E45, but subsequently increased rapidly. At the end of neurogenesis in the retinal ganglion cell layer, around E70, most labeled cells were considerably smaller (7-9 microns) than those generated earlier. Our results indicate that within the ganglion cell layer of the macaque, neurons of small caliber are generated first, followed successively by medium sized cells. Large, putative P alpha cells are generated late. The production between E56 and E70 of cells with the smallest somata suggests that the last-generated neurons in the ganglion cell layer are predominantly displaced amacrine cells. Within the same sector of retina, different classes of neurons in the ganglion cell layer of the rhesus monkey appear to have a sequential schedule of production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.