Socioeconomic metabolism (SEM) is the exchange of materials and energy between society and the environment involving the social, economic and environmental sectors. In this paper, a boundary was defined between the economic (consumption) and environmental (waste recovery) limits in a city of 300,000 inhabitants in relation to the circulation (generation, reuse and disposal) of end-of-life tires (ELTs). The objective was to elaborate a theoretical structural model to evaluate the socioeconomic metabolism of waste (SEMw) by means of technical constructs (direct material flows (DMF), reverse material flows (RMF), socioeconomic environment (SEF) and sociodemographic factors (SDF)). Structural Equation Modeling (SEMm) was performed using Partial Least Squares Structural Equation Modeling (SmartPLS) software. The results obtained from the hypotheses show the causal relationships between the technical and social constructs and suggest guidelines for supporting the planning and management of urban solid waste in the collection and final disposal of ELTs. The processed information also contributes to the analysis of the city’s socioeconomic scenarios in relation to the disposal of ELTs. One of the hypotheses tested (RMF have a direct effect on SEMw) shows the importance of managing ELTs through the correct final disposal of waste and recycling. SEMw was evaluated from the perception of the local society and it is concluded that it is possible to plan public policies to avoid the formation of waste inventory in the city.
Read full abstract